

A "Safe by Design" Concept for Flame-generated Nanomaterials

<u>Philip Demokritou¹</u>, Samuel Gass^{1,2}, Georgios Pyrgiotakis¹, Joel M. Cohen¹, Georgios Sotiriou², Sotiris Pratsinis²

¹Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Harvard University, 665 Huntington Avenue, 02115 Boston, MA U.S.A

²Particle Technology Laboratory, ETH Zurich , Switzerland

Acknowledgements

Collaborators:

- Samuel Gass[,], HSPH, ETH Zurich
- Joel Cohen, HSPH
- Georgios Pyrgiotakis, HSPH
- Glen Deloid, HSPH
- Georgios Sotiriou, ETH Zurich
- William Goldsmith, NIOSH
- David Frazer, NIOSH
- Jane Ma, NIOSH
- Vincent Castranova, NIOSH
- Sotiris Pratsinis, ETH Zurich
- Joseph Brain, <u>HSPH</u>

Funding Sources:

- □ NIEHS (NIEHS grant No. ES00002)
- Swiss National Science Foundation (grant no. 200020-126694)
- **BASF**

Harvard School of Public Health

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Background Information

- The likely success or failure of NT industry depends on nano-EHS matters.
- Research on "safe by design" approaches is lacking behind but is considered crucial to the sustainability of the nanotech industry.
- Flame generated Me and MeO ENMs are currently the most widely used by volume, family of ENMs (90% by volume).
- Me/MeO: Many applications in cosmetics, building materials, antimicrobial applications, etc

A Safer Formulation Concept for flame-generated ENMs

Study Objectives:

Objective 1: <u>Develop and Validate</u> the concept for a comprehensive nanopanel of industry-relevant ENMs (CeO2, ZnO, Fe2O3, Ag).

Objective 2: <u>Understand</u> the coating fundamentals and assess coating efficiency. <u>Characterize</u> Physicochemical and morphological properties of SiO2 coated and uncoated ENMs

Objective 3: <u>Assess</u> the effect of SiO2 coatings on <u>nano-bio interactions</u> using state of the art in-vitro cellular and in-vivo bio-assays

- (1) Sotiriou et al., Curr Opin Chem Eng **2011**, 1, 3 10
- (2) Xia et al., ACS Nano 2011, 5, 1223 1235
- (3) Napierska et al., Particle and Fibre Toxicology 2010, 7,39
- (4) Teleki et al., Chem. Mater. 2009, 21, 2094–2100
- (5) Sotiriou et al., Adv. Funct. Mater. 2010, 20, 4250–4257

Methods (1/5) : Synthesis using the VENGES platform *Scalable, One Step, In-flight, SiO*₂ *encapsulation*

Buesser et al., Chem Eng Sci 2011, 65, 5471-5481

(2)

Methods (2/5): State of the art P-c-m Characterization (powder, liquid, aerosol)

As nanopowder:

X-ray Diffraction XRD (Crystal Structure):

- Crystal phase and composition
- Crystal Size

BET N_2 adsorption:

• Specific surface area (m²/g)

X-ray Photoelectron Spectroscopy (XPS):

Quantifiable elemental surface composition & coating efficiency

Isopropanol Chemisorption was also used to validate coating efficiency

TEM/SEM for morphology

In *liquids* (DI, bio media):

Dynamic Light Scattering:

- Hydrodynamic diameter
- Zeta-potential

Agglomeration potential-Effective density (DeLoid

As aerosol:

Scanning Mobility Particle Sizer (SMPS):

- Mobility diameter (distribution)
- Particle concentration MOUDI Cascade impactor:
- Mass size distribution

Methods (3/5): Nano-cellular interactions Assessing SiO₂ coating influence on ENM-bio interactions <u>in-vitro</u>.

Multiple Cell lines : A549, CALu3, Primary AM

ENM nanopowder dispersion and dosimetry according to Cohen et al., 2012

Multiple Assays: MTT, WST (metabolic activity), LDH (membrane integrity), etc

Exposure Period: 24 h

Administered doses: 6.25, 12.5, 25.0, 50.0, 100.0 mg/ml

(1) Cohen et al. Nanotoxicology **2012**, doi:10.3109/17435390.2012.666576

Methods (4/5): In-vivo validation for CeO2 Assessing SiO₂ coating influence on ENM-bio interactions <u>in-vivo</u>.

Inhalation Study Exposure system (CeO2 case study):

Methods (5/5): In-vivo validation for CeO2

Assessing SiO₂ coating influence on ENM-bio interactions <u>in-vivo</u>.

Study Design:

- Animal Model: Male Sprague-Dawley rats
- The animals (n = 6/group) were exposed to either SiO₂-coated CeO₂, uncoated CeO₂ or particle-free environments (controls)
- Exposure : 2 h/day, 4 days.
- BAL biochemical analysis at 24 h post exposure.
- Inflammatory and cytotoxicity biomarkers: PMNs, LDH alveolar macrophages (AM), and albumin)
- Special considerations: Match deposited to lungs dose for both coated and uncoated aerosol s. (How? We matched both aerosol mass concentrations and size distribution for SiO₂-coated and uncoated CeO₂)

Results (1/5): Synthesis and Characterization Assessing SiO₂ coating influence on core material crystal structure.

0.1

0.3

0.2 n_{HMDSO}/n_{CeO2}

Intensity [a.u.]

Results (3/5): Assessing SiO2 coating efficiency qualitatively and quntitatively

XPS (CeO2):

Isopropanol Chemisorption (CeO2)

Isopropanol desorption bands disappear for TCT = 3 nm -> full encapsulation

Results: In-vitro Cellular data

Assessing SiO₂ coating influence on ENM-cellular interactions invitro (A549, THP1 human macrophages).

(2) Xia et al., ACS Nano 2011, 5, 1223 – 1235

Results: In-vivo data-CeO₂ inhalation study

Results: : In-vivo data-CeO₂ inhalation study

<u>CeO₂</u> exposure induces **lung injury & inflammation**^{1,2} -> increased PMN, LDH levels

<u>SiO₂-encapsulation</u> inhibits **lung injury % inflammation** -> PMN, LDH levels comparable to particle-free controls

SiO₂-coated and uncoated CeO₂ did not cause **air/capillary damage** -> albumin levels as in control group

(1) Ma et al., *Nanotoxicology* **2011**, 5, 312 - 325

(2) Nalabotu et al., International Journal of Nanomedicine 2011, 6, 2327-2335

Conclusions

1) A scalable method for in-flight SiO_2 coating of Me an Me_xO_y ENMs was developed and **optimized** for a comprehensive nanopanel

2) The method enabled the **hermetic coating** of all materials in the nanopanel (XPS, Chemisorption)

3) Once coated, nanomaterial exhibited agglomeration and surface charge **similar to pure SiO₂** when dispersed in **liquid media** (DLS).

4) The SiO₂ coating was effectively **reduced toxicity in-vitro** (LDH, MTT on A549 for ZnO and Ag)

5) The Safer Formulation Concept was **validated in-vivo for CeO2**

Questions???

List of <u>precursor solutions</u> used in *Nanopanel Synthesis*

ENM	Precursor	Solvent	Precursor Molarity
Ag	Silver acetate (Sigma Aldrich)	2-ethylhexanoic acid:acetonitril (1:1) (>99%, Sigma Aldrich)	0.5
ZnO	Zinc naphthenate, 65% in Mineral Spirits (10% Zn) (STREM)	ethanol (95%, Sigma Aldrich)	0.5
Fe ₂ O ₃	Iron(III) acetylacetonate (Sigma Aldrich)	2-ethylhexanoic acid:acetonitril (1:1) (>99%, Sigma Aldrich)	0.5
CeO ₂	Cerium(III) Ethylhexanoate, 49% in 2- ethylhexanoic acid (12 wt% Ce) (STREM)	xylene (>99%, Sigma Aldrich)	0.5
SiO ₂	Hexamethyl disiloxane (HMDSO) (Sigma Aldrich)	ethanol (95%, Sigma Aldrich)	0.5

Summary of ENMs used to evaluate ENM-cellular interactions (in-vitro)

Material	Theoretical SiO ₂ [wt%]	TCT [nm]	d _{XRD,core}	SSA [m²/g]
SiO ₂	100	N/A	19 (d _{BET})	147
CeO ₂	0	0	27	28
SiO ₂ -coated CeO ₂	20	3	28	31.3
Fe ₂ O ₃	0	N/A	19.6	42
SiO ₂ -coated Fe ₂ O ₃	33	2.7	21.3	49
Ag/SiO ₂	50	N/A	20.4	57
SiO ₂ -coated Ag	10	1.8	28	29
ZnO	0	N/A	28	36
SiO ₂ -coated ZnO	23	2.5	27.0	66

Detailed schematic of VENGES reactor

Figure 4: Detailed schematic of the SiO₂ coating reactor for synthesis of hermetically coated ENMs.

Results (2/5): Synthesis and Characterization Assessing SiO₂ coating influence on Crystal Size and SSA.

Results: ENM-media Interactions

Assessing SiO₂ coating influence on ENM agglomeration in liquid media.

Results: ENM-media Interactions

Assessing SiO₂ coating influence on ENM surface charge in liquid media.

Results: ENM-Bio Interactions

Assessing SiO₂ coating influence on ENM-cellular interactions invitro (A549). Most materials

⁽²⁾ Xia et al., ACS Nano 2011, 5, 1223 – 1235

Results (4/5): Synthesis and Characterization Assessing SiO₂ coating efficiency quantitatively using XPS

All materials: rapid decay in Me/(Me+Si) surface atomic fraction

-> optimized mixing conditions in coating reactor (homogenous conditions)

Results (5/6): ENM-media Interactions Assessing SiO₂ coating influence on ENM agglomeration in liquid media.

b